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Abstract-Two interacting systems of partial differential equations governing three-dimensional laminar 
flow of an incompressible viscous fluid undergoing solidification or melting while under the influence of 
an externally applied magnetic field have been formulated and integrated numerically. The model includes 
effects of Joule heating, latent heat, and arbitrary magnitude and orientation of gravity and the magnetic 
field. It allows for arbitrary temperature-dependent physical properties within the melt and the solid phase. 
The mushy region is captured by varying viscosity orders of magnitude in the mushy region and by allowing 
latent heat of phase change to be an arbitrary function of temperature. The uniqueness of this approach 
is in the fact that both liquid and solid phases are treated as incompressible liquids with the solid phase 
having an extremely high viscosity. It was found numerically that the magnetic field strength and orientation 
can significantly influence flow field velocity and vorticity, amount of accrued solid, and the solid/liquid 

interface shape. 

INTRODUCTION 

THE OBJECTIVE of this paper is to elaborate on a math- 
ematical model and an accompanying numerical algo- 
rithm capable of simulating fully three-dimensional 
melt flow control during melting and solidification 
via an arbitrarily distributed and oriented externally 
applied magnetic field. It has been well known ana- 
lytically [ 1,2] and demonstrated computationally [3- 
12] that the magnetic field can eliminate vorticity from 
the flow field and reduce the magnitude of the fluid 
motion so that the solid/liquid front shape and its 
propagation speed could be manipulated. The for- 
mulation presented in this paper extrapolates on our 
previous work [&12] which was based on the fund- 
mental concepts of MagnetoHydroDynamics (MHD) 
as formulated by Stuetzer [2] and an extended Bous- 
sinesq approximation formulation [ 131 that allows 
for temperature-dependent physical properties. Our 
formulation simultaneously predicts detailed velocity, 
pressure, temperature and magnetic fields for the 
moving melt, while capturing the forming solid phase 
by using a single computer code. The same math- 
ematical formulation and computer code can simulate 
the reverse process of melting of the solid phase. In 
this work we have formulated the entire problem as 
three-dimensional and time-dependent although our 
computational results will be for steady situations 
only. The objective is to develop a consistent math- 
ematical model and an accompanying computer code 
for detailed analysis of MHD solidification and melt- 

ing in general three-dimensional configurations in 
terrestrial conditions and in reduced gravity. Our 
formulation is simultaneously applicable to regions 
containing all melt, all solid, or their mixture (mushy 
region). We modeled the locally solid regions as con- 
taining the melt having extremely high viscosity. 
Consequently, the computed velocities in the solid 
regions will not be identically zero, but will be 
extremely small compared to the velocities in the melt. 
In this work, only incompressible flow will be con- 
sidered while accounting for thermal buoyancy via 
an extended Boussinesq approximation in the form 
which is valid even when melt [ 131 and solid properties 
vary as separate arbitrary functions of non-dimen- 
sional temperature [9-121. To account for this, we 
present a more complete and consistent mathematical 
model for MHD solidification than we did in our 
earlier publications [6-121. 

MODELING MHD SOLIDIFICATION 

Starting with Maxwell’s equations and Ohm’s law, the 
magnetic field transport equation can be derived [ 1,2] 
as 

aH 
i?t-Vx(vxH) = -P.j.“VlH. (1) 

For many applications involving parametric studies it 
is convenient to use non-dimensional temperature, 
0 = (T- TJAT,,. Typically, either AT,, = T,,suldur-- 

837 



838 G. S. DULIKRAVICH EI al. 

NOMENCLATURE 

C specific heat [J kg- ’ Km ‘1 
EC Eckert number 

.f volume fraction of the melt in a 
computational cell 

Fr Froude number 

g(g,. g, ,g;) gravity force per unit volume 
[ms-‘1 

Gr Grashof number 

H(H,, H,., Hz) magnetic field [H kg- ‘1 
Ht Hartmann number 
k 

I 
L 

P 
pm 
Pr 
Ra 
Re 

ST, 

T 

heat conductivity coefficient 
[Wm-’ K-‘1 
length [m] 

latent heat of liquid/solid phase change 

[Jk- ‘I 
pressure [kg mm ’ s- ‘1 
magnetic Prandtl number 
Prandtl number 
Rayleigh number, Gr Pr 

hydrodynamic Reynolds number 
Stefan number 
time [s] 

absolute temperature [K] 

P artificial compressibility parameter 

‘/ magnetic permeability coefficient 
[Hm-‘1 

fi viscosity coefficient [kg mm ’ sm ‘1 
;, q, (’ non-orthogonal grid coordinates 

P density [kg m- ‘1 
0 electrical conductivity [Q- ’ m ‘1 

: 

non-dimensional temperature 

gravity potential. 

Subscripts 
0 reference value 
cold cold wall 

hot hot wall 
i component of a vector 

j component of a vector 
1 liquid 
liquidus liquidus temperature condition 

P specified 
S solid 

solidus solidus temperature condition 
differentiation. 

ATo reference temperature difference [K] 
v(u, u, u,) velocity vector [m s ‘1 Superscripts 
V volume [m’] 1 liquid 

x,2’,: Cartesian coordinates [ml. S solid 
T transpose of a matrix or a vector 

Greek symbols * nondimensional values 
u thermal expansion coefficient [Km ‘1 function of non-dimensional temperature. 

T solldua and To = Tsalldua or ATo = That- Lid and 
T, = Tceld. The latent heat released or absorbed per 
unit mass of mushy region (where T,,qu,dus > 

T> Tso,,,J is proportional to the local volumetric 
liquid/(liquid + solid) ratio often modeled [ 141 as 

where the exponent n is typically 0.2 < n < 5. For 
certain materials their physical properties (density. 
viscosity, heat conductivity and heat capacity) can be 
significantly different in the melt as compared to its 
solid phase. We will assume linear variation of density 
as a function of non-dimensional temperature in the 
liquid and in the solid 

W/PO,) p; = 1 + mm-msr-~ (T- T,) 
0 

= 1+ 

= 1 -cr$(o-e”) (3) 

with a similar expression for the solid phase. The 
partial differential equations governing fluid flow 

(Navier-Stokes) and the magnetic field transport 
(Maxwell) can be non-dimensionalized in a number 
of ways. If the flow has a mean stream, the non- 
dimensionalization will lead to the introduction of the 
hydrodynamic Reynolds number because of the well- 
defined reference velocity. Thus. 

H v* =ki g* =& H* =IHol 

x* = x 
1” 

(4) 

with similar expressions for the solid phase. In this 
work we assumed that rr and y do not vary with 
temperature (B: = o,,/cr,, 0: = (~~~/0~, y: = yO,/yO 
and 1;: = y,,/l;,). Thus, the reference values des- 
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aH* 
,t,-V*x(v*xH*) 

Re = PoUo[o 
~ Fr2 =g EC=% (6) 

PO 0 0 0 0 

Pr _ POCO s = COAT, p = YO~OPO 
~ (7) 

ko te Lo m PO 

Gr = /&olgolAToG 
I:2 

Pi 
. (8) 

Then, adopting an extended Boussinesq approxima- 
tion [13] to MHD flows, the non-dimensional Navier- 
Stokes equations for phase-changing mixtures of 
two liquids become : 

Mass conservation for two-phase MHD flows 

v**v* = 0. (9) 

Linear momentum conservation for two-phase MHD 
flows with thermal buoyancy and magnetic force 

av* 
p”,,+fp:v*.(v*v*+j:I) 

+(1-f)p:V**(v*v*+p’:I) 

= $ (v*V* + (v*V*)‘) 

+PMp &2 ~(V*xH*)xH*+p$&$g* 
m 1 

(v*v* + (v*V*)‘) 

(V*xH*)xH*+pfct$$g* . 1 
Energy conservation for incompressible two-phase 
MHD flows including Joule heating 

(fPl*(cv).tl+ (1 -f)P:(m.o) g 

+.fp:V*~(c,:~v*)+(1-f)p:V*~(c,*,8v*) 

+< ;* g (V* x H*) * (V* x H*) 
> 

(11) 
s m 

where the subscripts after the comma designate partial 
differentiation with respect to the variable or variables 
that follow the comma. 

The magnetic field transport equations for the two- 
phase MHD flow in their non-dimensional form 
become 

839 

= f/(%+9:)+(1 -fMaJ3 V*2H*, 

P,,,Reb 
(12) 

Here p = fp: + (1 - ,f)p$, while f = 1 for Q > t$lquidus 
and f = 0 for 0 < Osolldus. Non-dimensional hydro- 
static, hydrodynamic, and magnetic pressures were 
combined to give 

j,+ = p*, 4~* I y:fft2 
PI* Fr’ m 

PH*.H* 

_HH*.H* (13) 

where $* is the non-dimensional gravity potential 
defined as g* = V*eP. We used an enthalpy method 
to formulate the equivalent specific heat coefficients 
in the liquid and the solid phases to give 

1 af 1 af 
cz=cF--- and c,*,=ct---, 

s,, a@ s,, a@ 

respectively. Notice that this expression allows for the 
latent heat not to be a constant, but to be released in 
the mushy region according to the empirical law given 
in equation (2). 

NUMERICAL MODEL FOR MHD 

SOLIDIFICATION 

For clarity of presentation, we will drop the asterisk 
symbol in all future formulas. Equations (9)-( 12) rep- 
resent a system of eight coupled non-linear partial 
differential equations. This global system has been 
split into two systems in order to simplify computer 
programming [6]. The first system represents the non- 
dimensional Navier-Stokes equations for incom- 
pressible flows with thermal buoyancy, magnetic field 
effects and possible solidification or melting. It can be 
written in a fully conservative form in terms of the 
non-orthogonal grid-following boundary-fitted co- 
ordinate system as 
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where 5 = ~(.x,.Y,z), v = W.I’,L), i = i(.x,y,--1, 0,s 
is the transformed solution vector, ENS, P,s and G,, 
are the transformed flux vectors, and 5,s are the trans- 
formed source vectors. Their superscripts 1 and s 
designate liquid and solid phase, respectively, so that 

%, = diag ]PPPP(.~P?(~~~).~ + (1 --f’hC(cX~L~)l 

(15) 

Re Re Re Re Pr 1 

ai, = diag O!f!~k?? !!c _k,* 
Re Re Re Re Pr 1 (16) 

Here, J = det [(a(<,~, c)/&~,y, z))] is the determinant 

of the Jacobian geometric transformation matrix. The 
metric tensor components are defined as 

a.ei ax, 
9v = q dl,‘ (17) 

Here, X, = &(x,_v, -7) is the Cartesian coordinate vector 

and i-, = .Q& n, c) is the curvilinear coordinate vector. 
The contravariant components U. V, Wand Fiji,. fi,,. 
I$ are defined as 

there is no time derivative term in the mass con- 
servation equation and the system cannot be inte- 
grated simultaneously. Consequently, an artificial 
compressibility [16] term is added to the mass con- 

servation so that 

(19) 

Here. b is a user specified parameter that depends on 
the problem geometry, grid, flow parameters, etc. [17]. 
In the steady state limit, the time variation of &,, 
term tends to zero and does not influence the accuracy 
of the steady state solution. For the liquid phase of 
the Navier-Stokes equations, 

The non-zero components of the source vector s’,, 
are 

Here. 

+ $(H;I,TH.i,) (25) 

Generalized vectors &,s, i& &, (?$Rs for the solid 
phase of the Navier-Stokes equations are defined in 
the same way except that the subscript and the super- 

script 1 becomes s. 
Similarly, the transformed system of magnetic field 

transport equations can be expressed as 

where the solution vector &,,,, and the flux vectors 
E MA<;? PM,,. &,+,(; are defined as 
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Characteristic inlet and exit boundary conditions 
In the case of a melt flow through a three-dimen- 

sional passage with an open inlet and an exit, both 
characteristic and non-reflective boundary conditions 

a 
MAG = 

fi(~:r:)+(l+/)/(~:r:)I (31) 

P,,, Re cfp:+ (1 --f)p,*) 

and ,%,,o = 0. In the case of a three-dimensional 
MHD problem, eight partial differential equations 
need to be satisfied simultaneously. This was 
accomplished by integrating a system of five fluid 
flow equations (equation (14)) and a system of three 
magnetic field equations (equation (28)) in an alter- 
nating fashion [6] and after each iteration transferring 
the information through source-like terms &,,,. By 
adding the artificially time-dependent term in the 
mass conservation, the entire Navier-Stokes system 
becomes non-singular and of a hyperbolic type so that 
it can be integrated in time using an artificial time 
maching [6] technique based on an explicit four-stage 
Runge-Kutta time-stepping algorithm [ 181. The 
explicit time integration scheme was used because it 
can be efficiently vectorized and easily modified when 
additional equations need to be incorporated in a 
system. A small amount of fourth order artificial 
dissipation [18] was added to the Navier-Stokes 
system at higher Reynolds number flows to suppress 
numerical oscillations that appear due to even-odd 
decoupling caused by central space differencing. 

BOUNDARY CONDITIONS 

Solid wall boundary conditions 
Along the solid walls, the velocity components were 

set to zero. The pressure gradient normal to the walls 
calculated from the momentum equations were used 
to compute pressure at the solid boundaries. This 
gives physically correct wall pressure distribution 
rather than assuming zero pressure gradient normal 
to the wall. Depending on which type of thermal 
boundary condition was imposed at the wall, the wall 
temperature was either specified or obtained from 
the specified surface heat flux and the temperatures 
computed at the points on the first grid line off the 
boundary. When the wall is a perfect electric conduc- 
tor, the tangential component of the magnetic field is 
discontinuous while the normal component is con- 
tinuous. If ( ) denotes the jump across the boundary, 
then at the wall boundary n-H = 0. If the wall is a 
perfect electric insulator the magnetic field will have 
no discontinuity at the wall, that is (H) = 0. 

have been implemented in our formulation. Charac- 
teristic treatment of inlet and exit flow boundary con- 
ditions [6] can be formulated by rewriting the system 
(14) in a non-conservative (characteristic) form as 

(32) 

For the sake of clarity of derivation of the charac- 
teristic boundary conditions, we will treat the problem 
as if all physical properties for both liquid and solid 
are those of the liquid phase and as if they are 
constant. Then, the eigenmatrix &.,, corresponding to 
the flux vector Jacobian coefficient matrix A,, is 

A,, = diag[U-a, Ufa, U, U, U] (33) 

where a is the equivalent local speed of sound 

a = (U'+B(5,~+5,~.+;,~))"'2. (34) 

From the eigenvalues it is obvious that there are four 
incoming characteristics corresponding to four posi- 
tive eigenvalues. Thus, four variables (u, v, w, 0) have 
to be specified at the inlet assuming that 5 is in the 
direction of the mean flow there. Nevertheless, the 
first eigenvalue is negative at the inlet meaning that 
one variable, p, has to be computed at the inlet from 
a characteristic form of the equations. Similarly, at 
the exit boundary, the pressure should be specified 
while the velocity components and the temperature 
should be obtained by integrating the characteristic 
equations. 

Coefficients of the similarity transformation matrix 
MN& that converts the t-direction generalized flux 
vector ENS, into its characteristic non-conservative 
form are given by 

m II = -U-a m,, = <., m I 3 = 5., 

ml4 = 5 .* ml5 - -0 (35) 

m2i = -U+a mZ2 = 5,, m23 = 5,, 

m ?4 = 5,: m25 = 0 (36) 

m3r = B((r.vk23-r,zkIZ)~+(5,1k31-5,rk?3)~’ 

+(Lk,2--5,.&,,)w) 

m32 = U(k,,w-k,,v)-8(5,k23-5.2k12) 

mj3 = U(k23u-k3,w)-B(5.,k31-5,xk23) 

m34 = U(k3,v-k,2u)-8(5.,k,2-r,~k3,) 

mjs - -0 (37) 
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m 53 = -5.,.UQ rnX1 = -~,zU6 m,, = a’ 

(39) 

where 

(40) 

If equations (14) are pre-multiplied by the similarity 
transformation matrix M&, the characteristic form 
of the equations is obtained. The equation cor- 
responding to the negative eigenvalue is to be selected 
at the inlet, while at the exit the equations cor- 
responding to the positive eigenvalues are chosen. The 
selection procedure can be conducted using the 
selection matrix LNS. If the boundary condition vector 
is QNs then 

01 

(42) 

Equations (42) are added to the system of transformed 
equations, so that, 

= --cc,At M,&ii:$+ 2 (43) 
k 1 

Here, t is the iteration level, CL* are the coefficients in 
the Runge-Kutta k-stage time-stepping scheme, and 
ii,, is the residual vector of system (14). At the inlet 
plane, 

L,s = diag [ 1 , 0, 0, 0, 0] (44) 

nNs = [0,u-u,.r’-2’p.~--U.p,0-ep]T. (45) 

At the exit plane 

so that 

L,, = diag[O, l,l, 1, l] 

nNs = [P’-_dp,O,O,O,O]r 

(46) 

(47) 

g= diag [/U, 0, 0, 0, 01. (48) 

Nevertheless, the characteristic boundary conditions 

at the exit plane require specification of the melt pres- 
sure on the entire exit plane, which cannot be per- 
formed correctly since the correct pressure distribution 
there is unknown a priori especially if the flow at the 
exit is not fully developed. A remedy is to use a differ- 
ent type of exit boundary conditions. 

Non-rejecting exit jlow boundary conditions 
The non-reflecting boundary conditions do not 

force us to specify any of the physical variables at 
the exit plane thus allowing computation to capture 
variable pressure distribution at the exit plane. Instead 
of specifying the exit plane pressure as required by 
the characteristic boundary condition treatment, an 
additional equation needs to be solved when using the 
non-reflecting boundary formulation. Specifically, the 
non-reflecting boundary condition demands that the 
amplitude of an incoming wave be constant in time 
[12,19-211 so that the outgoing waves depend only on 
information at the boundary and within the domain. 
Thus, those equations which represent outgoing 
waves can be solved at the exit boundary as they are 
to give three velocity components and temperature 
at the exit. At the inlet boundary, a characteristic 
boundary treatment was employed. 

For one-dimensional problems, wave propagation 
direction is well defined. For multi-dimensional prob- 
lems, there is no unique direction of propagation 
because the coefficient matrices &, &.,s, &,, cannot 
be simultaneously diagonalized. Boundary condition 
analysis requires that any one coordinate direction be 
diagonalizable at a time. Eigenvectors corresponding 
to the Jacobian coefficient matrix A are solutions of 
the matrix equation [a,,-x,,Ij{x} = 0. Pre- 
multiplying the governing equation (14) with the 
inverse of a similarity matrix S,, of A,, gives 

where 

a h4S aJ&s -- 
ai ( 7gi,-r 

> 

(50) 

Then we can define a column vector L,, as follows 

(51) 

Components of L,s defined as above are used for the 
equations corresponding to the outgoing waves, while 
for the equations corresponding to incoming waves 
the characteristic boundary treatment and non- 
reflecting boundary treatment have different 
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approaches. In characteristic boundary treatment for 
incoming waves, flow properties are specified instead 
of solving the equations. On the other hand, the non- 
reflecting boundary treatment defines Ls differently 
for only these equations corresponding to incoming 
waves [19, 201 

L, = -@,,‘A,,),. (52) 

Here the subscript ‘i’ represents the equation cor- 
responding to the incoming wave. This condition con- 
strains the amplitude of the incoming wave to remain 
constant with time so that the outgoing waves are 
not allowed to reflect back into the domain. This 
formulation of non-reflecting exit boundary condition 
was used in the present work allowing for automatic 
prediction of non-uniform pressure on the exit plane. 

The system of the magnetic field equations (28) is 
also hyperbolic in time. The eigenvalues of the Jacob- 
ian matrix of this system are 6,,o = diag [U, U, 0] in 
the case of c-direction. At the inlet plane, therefore, 
two components of the magnetic field vector should 
be specified, while the axial component H, of the 
magnetic field vector has to be evaluated from the 
characteristic equation. The transformation matrix 
for the magnetic transport equations is given by 

[ 

k2,v-k,,w k3,w-k23u k,,u-k,,v 

NT,,& = k,,w-k,,v k,,u-kllw k,,v-k,,u 

-S,xk,z -5,.vk,z3 -Lk,,, I 

(53) 

where k12, k,,, k,, are defined in equation (40) and 

k 123 = k,,+kzs+kl, (54) 

LMAC = diagfl, 1,0] (55) 

QM.W = (K -H,, H, - Hyp, O}T. (56) 

At the exit plane, all three magnetic field components 
were continuously updated by integrating the govern- 
ing equations. 

NUMERICAL RESULTS 

Based on the elaborated analytical model and the 
numerical algorithm, a fully three-dimensional MHD 
flow analysis computer code has been developed [6]. 
Numerical results from this code were compared with 
known analytical solutions and proved to be highly 
accurate [6]. This code was then augmented to incor- 
porate thermally induced buoyancy, temperature- 
dependent physical properties of the melt and the solid 
phase and the effects of latent heat release with a 
model for the mushy region [7-121. 

Two basic configurations were studied with this 
code: a cubicial closed container (Fig. l(a)) with sides 
of length I = 0.01 m and a straight duct having square 
cross sections (Fig. l(b)) with dimensions 0.01 m x 
0.01 m x0.0475 m. The cubical closed container 
was completely filled with the melt and the duct was 

assumed to be horizontal with the melt flowing in 
the positive x-direction. Gravity was assumed to act 
vertically downward in the z-direction. If not indi- 
cated otherwise, the solid walls were thermally insu- 
lated. All runs were performed with CFL number 2.8, 
von Neuman number 0.4, artificial compressibility 
parameter /I = 5 and with the coefficient of fourth 
order artificial [ 181 dissipation v = 0.0001. The values 
of the reference parameters were: u,, = 0.01 m s-‘, 
lo = 0.01 m, g,, = 9.81 m SK’ and the exponent used 
in the model for latent heat release (equation (2)) was 
n = 5. To account for the rapidly increasing viscosity 
in the mushy region and to treat the solid phase as 
an extremely viscous fluid, we used ~Os/r)O, = 10”. All 
computations were performed in FORTRAN lan- 
guage on a Cray-YMP computer using a single pro- 
cessor. A typical computation time with a magnetic 
field was approximately one hour. 

Case 1. Closed container without solid$cation 
As a basic test of the capability and accuracy of the 

computer code to predict three-dimensional buoyancy 
driven flows without phase change we used the test 
case of Ozoe and Okada [3] for a cubical closed con- 
tainer filled with molten silicon (Table 1). A com- 
putational grid consisting of 30 x 30 x 10 cells sym- 
metrically clustered towards the walls was used for 
this purpose. They presented computational results 
at three perpendicular mid-planes with Ra = lo6 and 
Pr = 0.054. Two numerical tests were carried out in 
the cubical enclosure with one of the vertical walls 
(x* = 0) uniformly heated (0 = 0.5) and the opposite 
vertical wall (x* = 1.0) uniformly cooled (6 = - 0.5). 
Notice that in this test case we used Ozoe and Okada’s 
formulation that 8 = (T- T,)/( That- Scold) with 
T, = (That+ Tcold)/2, while both That and Scold were 
assumed greater than T,iquidus. The first test run was 
performed without an external magnetic field 
(Ht = 0) and the second with an external uniform 
magnetic field (Ht = 500) applied horizontally in the 
x-direction. In the case of no magnetic field the com- 
puted isotherms on the horizontal z* = 0.5 mid-plane 
(Fig. 2(a)) and on the vertical y* = 0.5 mid-plane 
(Fig. 2(b)) compare well with the computational 
results (Fig. 2(c), (d)) of Ozoe and Okada [3]. In the 
case with the magnetic field applied, the computed 
isotherms (Fig. 3(a), (b)) compare reasonably well 
(Fig. 3(c), (d)) with those of Ozoe and Okada. This 

Table 1. Non-dimensional input parameters 

Steel melt Silicon melt 

Re 
Pr 
Gr 
EC 
Ht 

p, 

100 200 
0.4167 0.054 
1000 I .85 x 10’ 
5.56x lo-” 7.87 x IO-’ 
0, 10, 30 0, 500 
0.01 0.01 
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FIG. 1. Test configurations and computational grids : (a) closed container, (b) straight square cross section 
duct. 

case is indicative of suppression of flow circulation by 
the strong externally applied magnetic field and the 
dominance of conduction in the process of heat trans- 
fer. Consequently, the magnetic field thickens the ther- 
mal boundary layer in the horizonal mid-plane 
z* = 0.5 (Figs. 2(a) and 3(a)) and also in the vertical 
mid-plane y* = 0.5 (Figs. 2(b) and 3(b)). 

Case 2. Closed container with soIid$cation from the 

top 
In this case the cubical closed container was filled 

with the molten steel (Table 1 and Table 2) having its 
top wall (z* = 0) uniformly cooled below freezing 
temperature (0 = - 1) so that significant solidification 
occurs at the upper wall [22]. The bottom wall 
(z* = 1.0) was uniformly heated (0 = 1). The con- 
tainer was discretized with 20 x 20 x 20 grid cells that 
were clustered symmetrically towards the walls. Two 
cases were run without the inffuence of the magnetic 
field (Ht = 0). One of the cases was in reduced gravity 
(g = O.Olg,) and the other with the full influence of 
gravity. Evidently, in the reduced gravity case con- 
duction is the dominant mode of heat transfer (Fig. 
4(a)), whereas in the full gravity case heat transfer is 
carried out by both conduction and thermal con- 
vection (Fig. 4(b)). The computed isotherms (Fig. 
5(a)) in full gravity and the corresponding contours 
of constant ,--velocity components (Fig. S(b)) on the 

horizontal Z* = 0.5 mid-plane indicate strong cen- 
trally located downward jet and upward motion close 
to the walls thus forming a deformed toroidal melt 
motion. 

Case 3. Closed container with side solid$cation 
A cubical closed container (Fig. l(a)) was dis- 

cretized with 20 x 20 x 20 symmetrically clustered grid 
cells and assumed filled with molten silicon (Table 
3 and Table 4) having the values of the reference 
quantities: u0 = 0.02269 m s- ‘, I, = 0.01 m, 
AT = 37.5 K, p,, = 2550 kg mp3. c,, = 1059 J kg-’ 
K- ‘, k. = 64 W m-’ K-‘, T,,= 1685 K, 
pLg = 7.018 x 10m4 kg m-’ ss’, go = 4.3 x lo4 W-’ 
m -‘andg,=9.81 ms2. It should also be pointed 
out that the values of c, k and ~1 were varied linearly 
within the mushy region. Notice (Table 3) that we 

Table 2. Physical properties used for 
molten steel 

C,, [J kg- ’ K- ‘1 788 
C,, [J kg- ’ K- ‘1 465.4+0.1336T 
k, w m-’ K-‘1 12.29 
k, [w m- * I!- ‘1 8.16 
T [Kl 1727 

T WI 1670 
L [J kg- ‘1 265 200 
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FIG. 2. Container without solidification (side cooling) ; isotherms for Ht = 0 with : (a) z* = 0.5 computed ; 
(b) y* = 0.5 computed; (c) z* = 0.5 from [3] ; (d) y* = 0.5 from [3]. 
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FIG. 3. Container without solidification (side cooling) ; isotherms for Ht = 500 with: (a) z* = 0.5 com- 
puted ; (b) y* = 0.5 computed ; (c) z* = 0.5 from [3] ; (d) y* = 0.5 from [3]. 
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a 

FIG. 4. Container with top solidification; isotherms for _r * = 0.5 and Ht = 0 with : (a) g = O.Olg, ; (b) 

FIG. 5. Container with top solidification (=* = 

t 

Y 
a b 

have assumed that the magnetic permeability 
coefficient for silicon is one order of magnitude larger 
than for vacuum. Consequently, the Hartmann num- 
ber in our case becomes Ht = 418.68, where B0 is 
the magnetic field strength measured in Teslas. In all 
pertinent cases, we used Ht = 100 corresponding to 
B, = 0.2389 Tesla. In all test cases, the vertical wall 
at x* = 0 was kept uniformly hot (0 = 2) and the 
opposite vertical wall (x* = 1) was kept uniformly 
cold (6’ = -1) with the remaining walls thermally 
insulated. Uniform gravity was applied in the negative 

0.5. g = g,,, Hf = 0): (a) isotherms; (b) constant -_-velocity 
contours. 

Table 3. Physical properties used for silicon 

L+ [kg mm’1 
P. [kg m- ‘I 
C, [J kg- I K- ‘1 
c, [J kg- ’ Km ‘1 
k,[Wm-‘Km’] 
k, [W mm’ K-l] 
T WI 
T, WI 
T, WI 
p [kg mm ’ s-- ‘1 
o( [Km ‘1 
L [J kg- ‘1 
g, [W-‘m-’ I 
cr,[W-‘m-’ 1 
y [Tm A-‘] 

2550 
2330 
1059 
1038 
64 
22 
1685 
1683 
1681 
7.018 x 10m4 
1.4x 10-J 
1803 000 
12.3 x 10’ 
4.3 x IO4 
411x 1om6 

z-direction in all the test cases (Fig. l(a)). The fol- 
lowing is a discussion of the computational results 
obtained by orienting a uniform steady external 
magnetic field along different axes. Depending on the 
orientation of the magnetic field, a different amount 
of solid phase has accrued (Fig. 6) in each of the test 
cases. 

Table 4. Non-dimensional parameters used for 
silicon 

Non-dimensional numbers Values used 

Re = PoV,l, 
824.6 

lro 

Fr = & 0.007047 

Gr = &&AT, 

& 
67.99 x 10“ 

_& = I’ 3 
c,AT,, 

1297x IO-* 

pr = !Y! 
k,, 

0.01161 

p =!?S m 4.255 x 10mb 
PO 

Ht = yol,H, 2 
0 

1 ,‘2 

418.6B, 
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FIG. 6. Container with side solidification : convergence histories for the four cases. 

- no magnetic field 
. . . . . . . . . . magnetic field in y-dir. 
. . . . . magnetic field in x-dir. 
_.-.- maaetic field in z-dir. 

Case 3.1. Closed container side solidtjkation with no 

magnetic jield. Comparison of the computed iso- 
therms (Fig. 7(a)) and the velocity vector field (Fig. 
7(b)) in the vertical mid-plane (y* = 0.5) depict 
strong melt circulation and the solid that accrued on 
the cold wall (x* = 1). The liquid/solid interface is 
highly curved in this plane. There are strong thermal 
gradients and 1666 solidified cells accrued on the 
cold vertical wall. Similarly, computed isotherms (Fig. 
7(c)) in the horizontal mid-plane (z* = 0.5) show that 
the thermal gradients inside the solid are significant 
and that the solid/liquid shape does not vary sig- 
nificantly in the y-direction. 

Case 3.2. Close container solidtjication with magnetic 
field in y-direction (perpendicular to plane of recir- 
culation). Computed isotherms (Fig. 8(a)) in the ver- 
tical mid-plane (y* = 0.5) when compared with the 
isotherms in the case without the magnetic field (Fig. 
7(a)) appear to be less curved and the vertical thermal 
boundary layer is thicker. As expected, the computed 
velocity vector field (Fig. 8(b)) in the same plane is 
clearly weaker than the computed velocity field in the 
case without the magnetic field (Fig. 7(b)). Conse- 
quently, the liquid/solid interface straightened some- 
what and more solid accrued resulting in 1843 sol- 
idified cells. Since the magnetic field reduced melt 

convection, the computed isotherms in the horizontal 
mid-plane (z* = 0.5) show almost no variation (Fig. 
8(c)) in the y-direction. 

Case 3.3. Closed container solidification with mag- 
neticjield in x-direction (jiiom hot to cold wall). The 
computed isotherms (Fig. 9(a)) in the vertical mid- 
plane (y* = 0.5) when compared with the isotherms 
in the case with the magnetic field acting in y-direction 
(Fig. 8(a)) are significantly straightened. The mag- 
netic field acting perpendicular to the hot and the cold 
vertical walls is definitely suppressing the melt motion 
(Fig. 9(b)) resulting in 1986 solidified cells and the 
melt/solid interface that is clearly less curved than 
in the previous test cases. The isotherms (Fig. 9(c)) 
computed in the horizontal mid-plane (z* = 0.5) show 
that the temperature field is practically two-dimen- 
sional. Identical results were obtained when applying 
the field in negative x-direction. In both cases the 
magnetic field force was suppressing vertical velocity 
components and consequently slowing the overall cir- 
culation. 

Case 3.4. Closed container solidification with mag- 
netic field in negative z-direction (against gravity). The 
computed isotherms (Fig. 10(a)) in the vertical mid- 
plane (y* = 0.5) are mildly curved as compared with 
the isotherms in the cases when the magnetic field was 
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FIG. 7. Container with side solidification and no magnetic FIG. 8. Container with side solidification and a uniform 

field : (a) isotherms in vertical y* = 0.5 mid-plane : (b) vel- magnetic field in y-direction: (a) isotherms in vertical 

ocity vectors in vertical JJ * = 0.5 mid-plane ; (c) isotherms in y* = 0.5 mid-plane; (b) velocity vectors in vertical JJ* = 0.5 
horizontal z* = 0.5 mid-plane. mid-plane: (c) isotherms in horizontal Z* = 0.5 mid-plane. 

b 
. _ . . . ; _ L =, -, _ _ ‘. ; . 

. . . . . c c c - _ ___... 
.,I/. 4---w-... 

..,#//.d-d,,.,,. 

.,I///0 I - - w .,\,. 

*III// / 4 - _ . , \ \ ,, 

,I111 I t . - . , \ , , , , 

‘IfI,/ I I . . . 

u,llllI I I , 

’ 1 Ill 

’ 1 II’ ~Illlh \. - , , , ,,’ 

Ill\\ \ . . _ 
0 0 /I’ 

II\\ \ \ . - _ * 0 / / ’ 
*I\\ \ . w 

2 
_‘M,,,’ 

*,\...w- _ 4 / , , . 

. . . ..T___ c . , * 

_...wv__ - _ _ . . 

. .._m-_ - - - f , 

t 

. . _ . _ _ _ - . 

X 

23 
8 



Modeling three-dimensional solidification 

a 

849 

a 

2 

t X 

b 
............ .... ..-_-- .... 

...... - - _ _ _ _ ... 

........ _ - _ .... 

............... 

............. , . 

........ 
...... 

............... 

....... . 1 * **a 

. . . 

. . . 
I . 

. . ,. 

27 I:::: : : : : : : : : : : 

t1 
. . ..I N-s _. . . . 

. . . . ._s_ _ _ . . . 
..-.. . _ _ _ . . . 

. . . -.. . . . . . 

I-X 

C 
.-- _---_ 

-l- 

1 

1 
T--- 

FIG. 9. Container with side solidification and a uniform FIG. 10. Container with side solidification and a uniform 

magnetic field in positive x-direction : (a) isotherms in ver- magnetic field in positive z-direction : (a) isotherms in vertical 

tical y* = 0.5 mid-plane; (b) velocity vectors in vertical y* = 0.5 mid-plane; (b) velocity vectors in vertical y* = 0.5 

y* = 0.5 mid-plane; (c) isotherms in horizontal Z* = 0.5 mid-plane ; (c) isotherms in horizontal Z* = 0.5 mid-plane. 
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0- 
0 2ooo 4ooo 6OW 
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FIG. 11. Container with side solidification of molten steel : 
convergence histories. 

acting horizontally in y-direction (Fig. 8(a)) and in X- 
direction (Fig. 9(a)). The vertically upward magnetic 
field also suppresses the melt motion (Fig. 10(b)) and 
creates almost the same amount of solid on the cold 
vertical wall (1962 solidified cells) as in the case when 
the field was acting horizontally in the hot-to-cold 
direction. The computed isotherms (Fig. IO(c)) in the 
horizontal mid-plane (z * = 0.5) show that the tem- 
perature field in the melt is mildly three-dimensional. 
Identical results were obtained when applying the field 
in the same direction as the gravity. In both cases 
the magnetic field force was suppressing horizontal 
velocity components and consequently slowing the 
overall circulation. 

In addition, a number of numerical tests were per- 
formed where the container was filled with the molten 
steel. Solidification from a side wall was simulated 
with full and reduced gravity and with or without a 

uniform vertical magnetic field. Figure 11 summarizes 
the effects of the magnetic field and the gravity for these 
test cases. It is clear that the effect of the magnetic 
field is more pronounced (in this case it increases the 
amount of accrued solid) with the increase in gravity 
magnitude. 

Straight duct $0~ with solid@ation 

The second configuration studied was a straight 
three-dimensional duct with a square cross section. 
Uniform molten steel (Table 1 and Table 2) tem- 

perature (0 = 2) was imposed at the duct inlet 
(x* = 0). Along all four walls a cooling was arbitrarily 
specified as 0 = 2- 3.6 sin (x*n). Characteristic 
boundary conditions were used at the inlet, while 

specifying nothing at the exit. Instead, a non-reflecting 

boundary condition was enforced at the exit so 
that variable pressure at the exit plane can be cor- 

rectly predicted. The flow field was discretized with 
50 x 20 x 20 grid cells that were clustered symmetri- 
cally towards the duct walls. Four computer runs were 
performed for this configuration. 

The first test case represents a solidifying flow field 
in a reduced gravity environment (g = O.Olg,) with- 
out any magnetic field (Ht = 0). Computed solidified 
zones are clearly evident on all four walls of the duct 
from the computed velocity vector fields (Fig. 12(a)) 
in the horizontal (-_ * = 0.5) mid-plane and the iso- 
therms (Fig. 12(b)) in the vertical (y* = 0.5) mid- 

plane. For all practical purposes the solution is doubly 
symmetric with respect to the longitudinal mid-planes. 

An additional test case was then run in a reduced 
gravity environment (g = O.Oly,) with a uniform 
magnetic field of Ht = 50 acting vertically downward. 
The influence of the magnetic field is evident from 
the velocity vector plot (Fig. 13(a)) in the horizontal 
(z* = 0.5) mid-plane depicting flattened velocity pro- 
files. This leads to a slight decrease in the amount of 
solid accrued on the vertical walls (Fig. 13(b)). 

An additional case was run with a full gravitational 
field (g = go) but without any magnetic field (Ht = 0). 

a 

b 

FIG. 12. Straight square cross section duct with solidification (g = O.Olg,, Ht = 0) : (a) velocity field at 
I* = 0.5 ; (b) isotherms at y* = 0.5. 
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FIG. 13. Straight square cross section duct with solidification (g = O.Olg,, HI = 50) : (a) velocity field at 
z* = 0.5 ; (b) isotherms at y* = 0.5. 

FIG. 14. Straight square cross section duct with solidification (y* = 0.5, g = g,,, Ht = 0) : (a) velocity field ; 
(b) isotherms. 

b 

FIG. 15. Straight square cross section duct with solidification (g = go, Ht = 0) : (a) velocity field at 
x* = 0.5 ; (b) pressure at the exit (x* = 1 .O). 
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In this case strong asymmetry can be noticed in the 

vertical plane velocity pattern (Fig. 14(a)) and the 
computed isotherms (Fig. 14(b)). This is due to strong 
thermal buoyancy. In this case significantly more solid 
accrued on the bottom wall and less on the top wall 
as compared to the solid accretion on the side walls. 

This is also evident from the computed isotherms in 
the vertical cross section plane (x* = 0.5) of the duct 
(Fig. 15(a)). The computed non-uniform pressure at 
the exit plane (Fig. 15(b)) clearly demonstrates the 
benefits of using non-reflecting boundary conditions 
rather than characteristic boundary conditions at the 

exit (x* = 1.0). 

CONCLUSIONS 

A complete analytical and numerical formulation 
has been developed for the theoretical prediction of 
phase change processes inside three-dimensional arbi- 
trarily shaped containers and ducts with and without 
the influence of an externally applied steady magnetic 
field and arbitrary gravity vector. Computational 
results confirm that the strength and the orientation 
of the magnetic field has a profound influence on 
the solidification and melting since it weakens flow 
recirculation regions and causes distorted velocity 
profiles having overshoots close to the solid bound- 
aries. This change influences convective heat transfer 
and affects the amount of the solid phase accrued 
on undercooled walls. Consequently, the temperature 
field also changes under the influence of the external 
magnetic field. This demonstrates a possibility for 
the development of an active control algorithm for 
realistic three-dimensional solidification or melting 
that would be especially applicable to reduced gravity 
environments since it would require low strength 
magnetic fields. 
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